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Abstract

Purpose – The purpose of this paper is to investigate the hydromagnetic steady flow and heat
transfer characteristics of an incompressible viscous electrically conducting fluid past a rotating disk
in a porous medium with ohmic heating, Hall current and viscous dissipation are also investigated.
Design/methodology/approach – Using appropriate similarity variables and boundary-layer
approximations, the fluid equations for continuity, momentum and energy balance governing the
problem are formulated. These equations are solved numerically by using the most effective Newton-
Raphson shooting method along with fourth-order Runge-Kutta integration algorithm.
Findings – It was found that magnetic field retards the fluid motion due to the opposing Lorentz
force generated by the magnetic field. Both the magnetic field and the Eckert number tend to enhance
the heat transfer efficiency. The Hall parameter however reduces the heat transfer rate. In terms of
the friction coefficient, the magnetic interaction parameter, the Hall parameter and the Eckert number
all combine to increase the skin friction, while increasing the Darcy number (increasing permeability)
reduces the skin friction so increasing the fluid velocity.
Practical implications – This paper provides a very useful source of information for researchers
on the subject of hydromagnetic flow in porous media.
Originality/value – This type of problem has potential to serve as a prototype for practical swirl
problems, for example, axisymmetric flow in combustors.
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Nomenclature

B0 magnetic flux density

Cp specific heat at constant pressure

Da local Darcy number, K�/�

Ec Eckert number, r2�2/��T

F non-dimensional radial velocity

G non-dimensional tangential velocity

g acceleration due to gravity

Gr Modified Grashof number,
g�ðTw � T1Þ=

ffiffiffiffiffiffiffiffi
��3
p

H non-dimensional axial velocity

Hw non-dimensional injection/suction
velocity, W=

ffiffiffiffiffiffiffi
��
p

K Darcy permeability parameter
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M magnetic interaction parameter,
�B2

0=��

p fluid pressure

Pr Prandtl number, �Cp/�

Re rotational Reynolds
number, r2�/�

s Hall parameter

T fluid temperature

Tw disk temperature

T1 ambient fluid temperature

u radial velocity

v tangential velocity

W uniform suction/injection velocity

w axial velocity

r radial axis

z vertical axis

Greek symbols

� coefficient of thermal expansion

� normal distance from the disk

	 non-dimensional temperature

� thermal conductivity coefficient

� dynamic viscosity

� kinematic viscosity

’ tangential axis

� fluid density

� electrical conductivity

� angular velocity

1. Introduction
The problem of hydrodynamic stability of flow due to a rotating disk is of great interest
in many engineering fields, particularly in the care and maintenance of turbine engines
and other rotary type machine systems, Arikoglu and Ozkol (2006). Typically, such
flows may be subjected to high operating temperatures and keeping an accurate map
of the velocity and temperature fields is necessary to ensure optimal operation of the
machinery. Finding the solutions of the highly non-linear and coupled governing
however remained an intractable problem until the pioneering work of von Karman
(1921) in which he introduced self-similar transformations that reduced the governing
partial differential equations to be reduced to ordinary differential equations that could
be solved using an approximate integral method.

The early study by von Karman has since been considerably improved and
extended, starting with the work of Cochran (1934) who improved von Karman’s
results by using a Taylor series expansion near the disk and a series solution involving
exponentially decaying functions far from the disk. Extensions to the earlier work have
included, inter alia, finding the effects of:

. impulsively starting the flow from rest (Benton, 1966; Rogers and Lance, 1960);

. an axial magnetic field applied to the fluid with or without Hall effects (El-
Mistikawy et al., 1990; Attia and Aboul-Hassan, 2004); and

. variable fluid properties (Herwig, 1985; Herwig and Klemp, 1988; Maleque and
Sattar, 2005).

Other recent studies on various aspects of the rotating disk flow problem include the
works of Takha et al. (2002) who considered electrically conducting fluids in
magnetohydrodynamics (MHD) flow and Arikoglu and Ozkol (2006) who considered
heat transfer characteristics on MHD flow.

The series of studies by Attia (2004, 2006, 2007) considered the effects of:

. ion slip;
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. temperature-dependent viscosity; and

. ohmic heating on rotating disk flow.

The present study incorporates the effects of ohmic and viscous heat dissipation, Hall
currents, porosity and an applied magnetic field on rotating disk flow with constant
properties. Recent studies on rotating disk flow that provide the basis for this work
include those of Osalusi and Sibanda (2006) who considered variable property laminar
convective flow due to a porous disk, Frusteri and Osalusi (2007) who considered
ion-slip effects in rotating disk with variable properties and Osalusi et al. (2007) who
considered ohmic heating, viscous dissipation, Hall and ion-slip currents in MHD flow
over a porous rotating disk with variable. There is an extensive literature on the
general problem of flow subject to an applied electromagnetic field, see for example,
Makinde (2005) and Makinde and Sibanda (2008).

2. Mathematical formulation
Consider non-rotating cylindrical polar coordinates (r, ’, z) where z is the vertical axis with
r and ’ as the radial and tangential axes, respectively. The disk rotates with constant
angular velocity � about the z-axis in a viscous incompressible electrically conducting
Newtonian fluid in a porous medium. The components of the flow velocity are u, v and w
in the directions of increasing r, ’ and z, respectively. The fluid pressure is p, the density of
the fluid is � and T is the fluid temperature. The surface of the rotating disk is maintained
at a uniform temperature Tw while the temperature of the ambient fluid is T1.

An external uniform magnetic field is applied perpendicular to the surface of the
disk and has a constant magnetic flux density B0 with a small magnetic Reynolds
number so that the induced magnetic field is small in comparison with the applied
magnetic field. Under the Boussinesq approximation, the basic equations governing
the flow of the fluid in the presence of the porous medium are:
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where � is the electrical conductivity, g is acceleration due to gravity, � is the coefficient
of thermal expansion, K is the Darcy permeability parameter and s is the Hall
parameter which may be positive or negative depending on the orientation of the
magnetic field.

The energy equation describing the temperature distribution in the fluid that
incorporates ohmic and viscous dissipation is:
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where T is the temperature of the fluid, Cp is the specific heat at constant pressure and
k is the thermal conductivity of the fluid. The last three terms in Equation (5) represent
viscous and ohmic dissipation, respectively. A major difference between this work and
the earlier studies by Attia (2004), Attia and Aboul-Hassan (2004) and Attia (2007) is
the inclusion of both ohmic and viscous dissipation in the current study. Joule and
viscous dissipation effects are included in Attia (2005), which, however is a separate
study on Couette rather than rotating disk flow.

The boundary conditions for the flow are:

z ¼ 0 : u; w ¼ W ; v ¼ r�; T ¼ T1;

z!1 : u; v! 0; T ! T1; p! p1;
ð6Þ

where the subscript ‘‘1’’ denotes ambient conditions. The following von Karman
similarity transformations (see Attia, 2007) are now introduced:

F ¼ u

r�
; G ¼ v

r�
; H ¼ wffiffiffiffiffiffiffi

��
p ;

	 ¼ T � T1
�T

; � ¼ z
ffiffiffiffiffiffiffiffiffi
�=�

p
; P ¼ p� p1

���
;

ð7Þ

where �T ¼ Tw � T1, � is a non-dimensional distance along the axis of rotation, � is
the kinematic viscosity of the fluid, F, G and H are the non-dimensional radial,
tangential and axial velocity components.

Using the above transformations, Equations (1)-(5) reduce to:

H 0 þ 2F ¼ 0; ð8Þ

F 00 � HF 0 � F2 þ G2 � Da�1F � M

1þ s2
ðF � sGÞ ¼ 0; ð9Þ

G00 � HG0 � 2FG� Da�1G� M

1þ s2
ðGþ sFÞ ¼ 0; ð10Þ

H 00 � HH 0 þ P 0 � Da�1H þ Gr	 ¼ 0; ð11Þ

1

Pr
	00 � H	0 þ 2Ec

Re
½ðH 0Þ2 þ 2F2� þ Ec½ðG0Þ2 þ ðF 0Þ2� þMEcðF2 þ G2Þ ¼ 0: ð12Þ
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The physical parameters appearing in Equations (8)-(12) are defined as follows:

Da ¼ K�

�
; M ¼ �B2

0

��
; Gr ¼

g�ðTw � T1Þffiffiffiffiffiffiffiffiffi
��3
p ; Ec ¼ r2�2

Cp�T
; Re ¼ r2�

�
; ð13Þ

where Da is the local Darcy number, Ec is the Eckert number that characterizes
dissipation, Gr is a modified Grashof number, M is the magnetic interaction parameter,
Re is the local rotational Reynolds number and Pr ¼ �Cp=� is the Prandtl number. The
appropriate boundary conditions are:

Fð0Þ ¼ 0; Hð0Þ ¼ Hw; Gð0Þ ¼ 	ð0Þ ¼ 1 at � ¼ 0; ð14Þ

Fð�Þ ¼ Hð�Þ ¼ Gð�Þ ¼ 	ð�Þ ¼ 0 as �!1; ð15Þ

where Hw ¼W=
ffiffiffiffiffiffiffi
��
p

is the suction (Hw < 0) or injection (Hw > 0) velocity at the disk
surface.

3. Computational method
The numerical technique chosen for the solution of the coupled ordinary differential
Equations (8)-(12) is the standard Newton–Raphson shooting method along with a
fourth-order Runge–Kutta integration algorithm. Equations (8)-(12) are transformed
into a system of first-order differential equations as follows. Let F ¼ x1, F0 ¼ x2,
H ¼ x3, H0 ¼ x4, G ¼ x5, G0 ¼ x6, 	 ¼ x7, 	0 ¼ x8 where the prime represent
derivatives with respect to �. Then:

x01 ¼ x2;

x02 ¼ x2x3 þ x2
1 � x2

5 þ Da�1x1 þ
Mðx1 � sx5Þ
ð1þ s2Þ ;

x03 ¼ x4;

x04 ¼ x3x4 þ Da�1x3 � Grx7;

x05 ¼ x6;

x06 ¼ x3x6 þ 2x1x5 þ Da�1x5 þ
Mðx5 þ sx1Þ
ð1þ s2Þ ;

x07 ¼ x8;

x08 ¼ Prx3x8 �
2PrEc

Re
ðx2

4 þ 2x2
1Þ � PrEc½ðx2

6 þ x2
2Þ þMðx2

1 þ x2
5Þ�;

ð16Þ

subject to the following initial conditions,

x1ð0Þ ¼ 0; x2ð0Þ ¼ s1; x3ð0Þ ¼ s5; x4ð0Þ ¼ s2;

x5ð0Þ ¼ 1; x6ð0Þ ¼ s3; x7ð0Þ ¼ 1; x8ð0Þ ¼ s4:
ð17Þ

The unspecified initial conditions s1, s2, s3 and s4 are guessed systematically and
Equations (16) are then integrated numerically as initial valued problems to a given
terminal point. The procedure was repeated until the results we obtained up to the
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desired degree of accuracy, namely 10�7. The value of �1 was found for each iteration
loop by the assignment statement �1 ¼ �1 þ ��. The maximum value of �1 to each
group of parameters M, Pr, Gr, Da, s, Re and Ec was determined when the values of
unknown boundary conditions at � ¼ 0 did not change in successive loops with error
more than 10�7.

4. Results and discussion
The numerical calculations for the local skin friction and the heat transfer rates are
presented in Table I. Figures 1-19 present the variation of the non-dimensional velocity
and temperature profiles with different parameter values. Numerical computations
were carried out for a fixed Prandtl number, Pr ¼ 0.71, that corresponds to air.

The boundary conditions (15) imply that all the velocity components and the fluid
temperature vanish at sufficiently large distances from the disk surface. These
conditions differ from those used in Frusteri and Osalusi (2007) and Osalusi et al. (2007)
where the axial velocity approaches a numerically determined asymptotic limit. In
addition, in the two aforementioned studies, analysis of the results is limited to the
suction case (Hw < 0). In this study we consider the case of small uniform injection
(0 < Hw < 1) and moderate rotational Reynolds numbers.

Table I shows the effect of parameter variation on the skin friction and the rate of
heat transfer at the disk surface. The radial skin friction and the heat transfer rate
increases with increasing values of M. This is however contrary to the findings in
Osalusi et al. (2007) where they considered the case of variable fluid properties in the
presence of Hall, ion-slip currents and suction, and showed that both the radial skin
friction and the rate of heat transfer decreases with increases in M. This discrepancy
can be explained by the findings in Frusteri and Osalusi (2007) that increasing the ion-
slip factor (absent in our study) significantly reduces both the skin friction coefficients
and the heat transfer rate. Similarly, their results show that the skin friction reduces
with increasing Eckert numbers while our finding is that for moderate injection, the
skin friction in the radial and axial directions increases with Eckert numbers.

Furthermore, the skin friction coefficients and the heat transfer rate increase with
the Hall parameter s (which is in line with the findings in Osalusi et al., 2007), as well as
increases in Gr and Da.

The rate of heat transfer increases with increasing Hartmann numbers M, Eckert
number Ec, the modified Grashof number Gr and the Darcy number Da.

Table I.
Skin friction values of
F0(0), H0(0), G0(0) and
heat transfer rates 	0(0)
for Hw ¼ 0.1, Re ¼ 1,
Pr ¼ 0.71

M s Gr Da Ec F0(0) H0(0) G0(0) �	0(0)

0.1 1.0 0.10 10 0.1 0.558516194 0.1959449684 �0.59295067 0.0761095069
1.0 1.0 0.10 10 0.1 0.612960069 0.1927945625 �0.90418024 0.0763706781
1.5 1.0 0.10 10 0.1 0.647846880 0.1922430699 �1.04563889 0.0808289319
1.0 1.5 0.10 10 0.1 0.646563289 0.1941631669 �0.82319066 0.0817923379
1.0 2.0 0.10 10 0.1 0.653489782 0.1951805572 �0.76583218 0.0849265047
1.0 1.0 0.12 10 0.1 0.615252072 0.2272746291 �0.89929007 0.0788654279
1.0 1.0 0.14 10 0.1 0.617338940 0.2600121207 �0.89469781 0.0811045462
1.0 1.0 0.10 2 0.1 0.523289180 0.0621147521 �1.07163943 0.0367705162
1.0 1.0 0.10 1 0.1 0.449339574 �0.0024958467 �1.25697567 0.2420446356
1.0 1.0 0.10 10 1.0 0.618437179 0.25792450699 �0.89366671 0.8302957456
1.0 1.0 0.10 10 1.5 0.621496486 0.29613119641 �0.88752709 1.3071470936
1.0 1.0 0.10 10 2.0 0.624608190 0.33658925148 �0.88105099 1.8407554671
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4.1 Effect of the magnetic interaction
Figures 1 and 2 show the effect of increasing the magnetic interaction parameter M on
the steady-state radial and tangential velocity components respectively when the other
governing flow parameters are held constant. The numerical simulations show that,
even in the presence of (moderate) injection, the magnetic field suppresses the fluid
velocity. In order to satisfy the continuity equation, the axial velocity component is also
be suppressed. The decrease in the velocity is accompanied by an increase in the

Figure 1.
The effect of increasing
the magnetic interaction

parameter on the
radial velocity

Figure 2.
Effect of varying the
magnetic interaction

parameter on the steady
tangential velocity
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temperature and the warming up of the fluid as it passes over the disk, Osalusi et al.
(2007).

The decrease in the radial velocity seen in Figure 1 is also in line with the increase in
the skin friction coefficient observed in Table I. The boundary layer thickness
decreases as the magnetic field effect increases.

4.2 Effect of the Hall current
Figures 3-5 present the effects of increasing the Hall parameter s on the velocity
profiles when the magnetic interaction parameter M ¼ 1 is held constant. The effect of
s is intricately linked to M since M ¼ 0 implies the absence of the Hall effects. For large

Figure 3.
The effect of varying the
Hall current s on the
radial velocity

Figure 4.
The effect of varying the
Hall current s on the
steady tangential velocity
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values of M and s � O(1) (such that M >>1 þ s2), the magnetic interaction parameter
has a much greater impact on the flow characteristics than the Hall parameter.
However, as in Attia and Aboul-Hassan (2004), for some non-zero values of the Hall
parameter, the velocity difference F � sG may well be negative. In such a case, the
magnetic field would be propelling rather than retarding the flow. Figure 3 shows that
flow reversal (also seen in Attia and Aboul-Hassan, 2004) is possible for negative
values of s. For large negative s the minimum velocity appears further and further from
the disk surface. In Figure 4, negative values of s actually enhance the tangential
velocity by reducing the effective magnetic damping (Attia, 2004).

Figure 5.
The effect of varying

the Hall current s on the
axial velocity

Figure 6.
Radial velocity

component for different
Darcy number



HFF
20,3

278

Back flow occurs for large positive Hall parameter values caused by the strong
magnetic deceleration of the fluid in Equation (10).

In Figure 5, the effect of reducing s is to produce only a marginal reduction in the
maximum value of the axial velocity component. Overall, the effect of an increase in
the Hall parameter is to increase the fluid velocity while conversely reducing the
temperature. This result is again consistent with the earlier results (for example,
Osalusi et al., 2007), and shows that moderate injection or suction does not significantly
change the characteristics of rotating disk flow.

Figure 7.
Change in the tangential
velocity for different
Darcy numbers

Figure 8.
Change in the axial
velocity for different
Darcy numbers
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4.3 Effect of the Darcy number
The effect of the Darcy number on the flow characteristics has not been considered in
the recent studies by Osalusi and his co-works (Frusteri and Osalusi, 2007; Osalusi and
Sibanda, 2006; Osalusi et al., 2007) nor in the earlier studies by Attia (for example,
Attia, 2004, 2005, 2006, 2007; Attia and Aboul-Hassan, 2004). The effect of the Darcy
number on the velocity components and temperature profile is illustrated in Figures 6-
8. For high Darcy number (corresponding to high permeability), the fluid velocity
attains a maximum at or near the surface. A decrease in the Darcy number results in a
gradual decline in the boundary-layer velocity and a simple explanation for this is that
a decrease in the permeability presents a physical barrier to the fluid flow.

Figure 9.
Effect of varying Hw on

radial velocity component

Figure 10.
Effect of varying Hw on

axial velocity component
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Consequently, less fluid passes through the medium and, as expected, the fluid velocity
decreases in all directions.

Analysis shows that increasing the Darcy number increases the boundary layer
temperature.

4.4 Effect of suction and injection
The effect of the fluid suction and injection on the velocity components is illustrated in
Figures 9 and 10.

4.5 Effect of Grashof number
The Grashof number Gr is a buoyancy term whose increase signifies an increase in the
disk temperature Tw, thus enhancing free convection currents and a heating of the fluid

Figure 11.
The effect of varying Gr

on the radial velocity

Figure 12.
Effect of varying Gr on
tangential velocity
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adjacent to the disk surface (as seen in Figure 11). As expected, the lighter warmer
fluid then tends to spread faster in all directions. This increase in the velocity and
temperature of the fluid is shown in Figures 13-16.

4.6 Effect of the Eckert number
Figures 15-17 show the influence of the Eckert number on the velocity components and
the temperature distribution. The effect of increasing the Eckert number is to increase
both the boundary-layer velocity and the temperature distribution.

Figure 13.
Effect of varying Gr on

axial velocity

Figure 14.
Effect of varying Gr on

the temperature profiles
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4.7 Effect of the rotational Reynolds number
The rotational Reynolds number measures the strength of the rotation-induced flow
and for higher Re the tangential and radial velocity components are enhanced while the
axial velocity is suppressed. The temperature field also reduces with increasing speeds
of rotation as shown in Figure 19.

5. Conclusion
We have investigated the heat transfer characteristics of steady MHD flow and heat
transfer of viscous electrically conducting incompressible fluid with Hall current past a
rotating disk with ohmic heating and viscous dissipation. This type of problem has
potential to serve as a prototype for practical swirl problems, for example,

Figure 15.
Effect of increasing the
Eckert number Ec on
radial velocity

Figure 16.
Effect of increasing the
Eckert number Ec on
axial velocity



Steady MHD
flow and heat

transfer

283

Figure 17.
Effect of the Eckert

number on the
temperature profile

Figure 18.
Effect of increasing the

Reynolds number Re on
axial velocity

Figure 19.
Effect of increasing the

Reynolds number Re on
temperature profile
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axisymmetric flow in combustors, see Kelson and Desseaux (2000). Numerical
computations were carried out to study the effect of the various physical parameters
controlling the system. The magnetic field retards the fluid motion due to the opposing
Lorentz force generated by the magnetic force. An interesting finding in this study is
that both the magnetic field and the Eckert number tend to enhance rather than
degrade the heat transfer efficiency. The Hall parameter however reduces the heat
transfer rate. In terms of the friction coefficient, the magnetic interaction parameter, the
Hall parameter and the Eckert number all combine to increase the skin friction while
increasing the Darcy number (increasing permeability) reduces the skin friction so
increasing the fluid velocity.
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